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Abstract

This letter challenges two recent papers in this journal, suggesting that the high burn-up structure of LWR-fuels

would evolve towards an open pore system, facilitating gas release. In contrast, recent experimental results and sup-

porting calculations reviewed here as well as new evidence from a 3D pore-reconstruction strongly suggest that the

materials in question would show closed porosity conditions and hence reduced probability of gas release, at least up to

porosity fractions of about 25%. This value is most likely conservative.

� 2004 Elsevier B.V. All rights reserved.
In the strategy for extending the burn-up in LWR

fuels, a matter of concern remains the release of fission

gases from the rim zone, as the released fraction in-

creases just at the burn-up where the rim structure ap-

pears (about 40 GWd/t M pellet average) [1]. However,

the more thoroughly the rim material and related pro-

cesses are characterized, the less probable seems a high

fission gas release (FGR) from this part of the fuel.

Support for this are the ostensible closed character of

the rim porosity [2] and the predominance of thermally

released gases (i.e. of non-rim origin) in the rod free-

volume [1]. In spite of this, two recent publications in

this Journal [3,4] postulate the rim material as evolving

towards an open system. According to [3] this transition

will happen steadily as a linear function of the rim

width, and according to [4], for values of porosity

P 24%, as a power function of the local porosity.

However, these results do not correspond to the current

experimental evidence.

In [3], the porosity increase and the grain subdivision

of the rim zone are considered per se to result in an
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enlarged free surface area of the system, and as a con-

sequence in an enhanced athermal gas release (via recoil

and knockout). However, fine-grained and porous

materials do not always exhibit large open areas. For

example, closed cell solid foams, a class of materials to

which the fuel rim would belong [2], can sustain con-

siderable pore fractions (>80%) under sealed condi-

tions [5]. Therefore, the surface-to-volume ratio (S/V)

increase postulated in Ref. [3], with a slope of 75 000

cm�1 per mm of rim width as well as the assumed

maximum S/V value at the pellet edge (’5000 cm�1),

require experimental proof. For comparison, measured

S/V values for UO2 range between <500 cm�1 for as-

sintered pellets with 95% density [6] and 6 2000 cm�1

for highly irradiated polycrystals (about 70 GWd/t M

burn-up) [7].

Linked to the conclusions in [3], it is stated in [4] that

the fuel rim will show extensive pore channelling and

boosted gas release after exceeding 24% porosity. This

comes from a Monte Carlo calculation, in which the rim

structure is simulated by distributing variable amounts of

1 lm (or larger) hole-cubes (pores) in a finite mesh of 0.5

lm solid-cubes (grains) [4]. However, these results con-

tradict our experimental observations and support-

ing calculations using Ronchi’s percolation model for

regular arrangement of pores [8], both indicating low
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pore-interconnection probability for the rim material up

to high porosity fractions [2,9].

In fact, analysis of ‘hardness vs. porosity’ data shows

that, in terms of the load-bearing area fraction, the rim

material is best represented by a system of (quasi-

spherical) pores in a continuous matrix (mimic of foam

materials) [2]. For such a system, the critical porosity

for the open pore transition ranges between about 30%

for randomly distributed pores [10] and about 52% for

cubic-packed pores [11]. In agreement, calculations

applying the cited percolation model of Ronchi for the

rim configuration (where the grain-to-pore size ratio is

0.2–0.3) indicate pore-interlinkage probabilities well

below the percolation threshold even for porosity frac-

tions of 50% or larger [2,9].

On the other hand, the hardness analysis for the non-

rim fuel material showed this as being best represented

by a system of intersecting solid particles (mimic of

sintered solids) [2]. This system can exhibit the open

pore transition as early as at about 3% porosity

[2,10,11]. Coincident with this, the application of Ron-

chi’s model for the as-sintered fuel conditions (the grain-

to-pore size ratio is 5–7) showed pore-interlinkage

probabilities above the percolation threshold already at

porosity fractions below 3% [2,8,9].

Compared to these results, the calculations in [4]

appear to underestimate the open pore transition for the
Fig. 1. 3D-reconstruction of the pore space at the pellet rim of an LWR

lack of pore interconnection in oblique and perpendicular cuts. The i

crack or grain boundary. The local porosity measured with Image-Pr
rim case (Popen-rim ’ 24%, grain-to-pore size ratio¼ 0.1–

0.5 [4]) and to overestimate this for the as-sintered fuel

case (Popen-as-fabricated ’ 12%, grain-to-pore size ratio¼ 10

[4]). A general explanation for these differences cannot

be given at this stage. However, for the rim material, it

appears that in [4] a too large grain size was assumed

(0.5 lm). By assuming smaller grain sizes closer to the

real rim (0.2–0.3 lm), thus allowing for a larger

(numerical) pore-wall thinning at constant rim volume,

it is possible that a larger porosity fraction before pore-

contact would have been obtained.

As further support for the findings in [2,9] we present

here new results of a 3D-reconstruction of the rim and

the pellet-centre pore systems of a LWR-fuel with about

100 GWd/t M average burn-up, respectively, in Figs. 1

and 2. The reconstruction was done from a series of 14

optical-micrographs, taken after stepwise polishing with

submicron suspension at about 0.2 lm-distance from

each other. Stacking of the digitalized optical image

planes and spatial interpolation of pore features with

appropriate isosurfaces were performed using the PC-

softwares Image-Pro� and 3D Constructor�.

For the rim case, it is shown that no relevant inter-

connecting paths between pores were present, despite the

high measured porosity (22%). Only rare pore coales-

cence and few isolated pore-channels on apparently

former cracks or grain boundaries were found (Fig. 1).
fuel with 100 GWd/t M average burn-up showing a manifested

solated pore-channel in Section 2 lies apparently on a previous

o� is 22%.



Fig. 2. 3D-reconstruction of the pore space at the pellet centre of a LWR fuel with 100 Gwd/t M average burn-up. Sequential oblique

cuts reveal abundant pore channels in the region. The local porosity measured with Image-Pro� is 6.6%.
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In contrast, rather abundant inter-pore channels could

be recognized in the fuel centre case, despite the low

measured porosity (6.6%). Three of these cases are

shown in the cuts of Fig. 2.

Besides the specific section shown in Fig. 1, other

sections examined in this fuel yielded a maximum

porosity at the pellet edge of 25.3%. Again, at this

porosity also the lack of pore interconnection was veri-

fied. Although we do not have data available of rim

zones at higher porosity values, the trend suggested by

the micrographs is that apart from some pore coales-

cence and enlargement (Fig. 1), boosted pore channel-

ling would not occur immediately above P ¼ 25%. In

line with this, similar high burn-up structures in U6Fe

[12] and U3Si [13] dispersion fuels show an onset of

bubble interlinkage (i.e. break-away swelling) at poros-

ity fractions >30–35% [14].

Thus, for conditions below and probably beyond the

presently characterized limits, the main sources of FGR

would continue being the central and intermediate fuel

regions (as-sintered microstructure), due to the higher

operating temperatures and the more likely formation of

pore channels. Nevertheless, FGR is not to be excluded

from the high burn-up fuel regions, as observations
suggest a variable decrease of the retained amounts of Xe

and Kr relative to the theoretical inventory [1,15,16]. As

we also mentioned in [9], a plausible reason for this gas

escape would be the activation of release channels on

the still present prior grain boundaries. Once the rim-

structure is formed, and prior to the onset of extended

pore interlinkage, the gas release from this region occurs

most likely only by long-range diffusion of occluded

gases.

As a conclusion, beside the exposed initial release and

minor possible gas-loss by out-diffusion, it is proposed

that the LWR fuel rim will maintain gas-tight conditions

at least up to 250 GWd/t M local burn-up and 25% local

porosity. These values are most likely conservative. Be-

cause of the undeniable impact on fuel performance,

further measurements are needed to exactly determine

these limits under the specific reactor situations.
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